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Abstract: Increasing the use of hygienic high-touch surfaces with antimicrobial properties in health
care and public spaces is one way to hinder the spread of bacteria and infections. This study investi-
gates the antimicrobial efficacy and surface reactivity of commercial laminate and powder coated
surfaces treated with silver-doped phosphate glass as antimicrobial additive towards two model
bacterial strains, Escherichia coli and Bacillus subtilis, in relation to surface weathering and repeated
cleaning. High-touch conditions in indoor environments were simulated by different extents of
pre-weathering (repeated daily cycles in relative humidity at constant temperature) and simplified
fingerprint contact by depositing small droplets of artificial sweat. The results elucidate that the
antimicrobial efficacy was highly bacteria dependent (Gram-positive or Gram-negative), not ham-
pered by differences in surface weathering but influenced by the amount of silver-doped additive.
No detectable amounts of silver were observed at the top surfaces, though silver was released into
artificial sweat in concentrations a thousand times lower than regulatory threshold values stipulated
for materials and polymers in food contact. Surface cleaning with an oxidizing chemical agent
was more efficient in killing bacteria compared with an agent composed of biologically degradable
constituents. Cleaning with the oxidizing agent resulted further in increased wettability and presence
of residues on the surfaces, effects that were beneficial from an antimicrobial efficacy perspective.

Keywords: antimicrobial surfaces; silver; indoor hygiene; laminate; powder coating

1. Introduction

Pandemics, antimicrobial resistance (AMR), and healthcare-associated infections
(HAIs) are examples of complex societal challenges that require collaborative interdis-
ciplinary efforts of stakeholders spanning multiple sectors and academic disciplines [1–3].
Solutions to such complex problems are often referred to as multi-sector innovations [1,4].

During the last two years, intensive attention has been paid to improved hand hygiene
and cleanliness of indoor spaces to prevent the spread of the COVID-19 pandemic. Less
active measures in public communication have been taken related to antimicrobial-resistant
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bacteria causing HAIs, which by 2050 are estimated to kill more people than cancer, reaching
up to 10 million deaths per year [5]. Antimicrobial-resistant bacteria pose a threat not only
in hospitals causing HAIs but are also detected in public spaces where many people spend
their time or pass through [6]. Thus, the prevention of infection transmission is getting more
attention, especially in public spaces. Usually, measures against more severe infections
like COVID-19 and AMR are often also effective against traditional causes of infections,
such as influenza, common flu, and stomach flu. The economic consequences of infections
transmitted mostly indoors can be extremely high. For example, the costs of the COVID-19
pandemic have been estimated to be over $16 trillion in the USA alone [7].

Research on different technologies aiming to improve infection prevention and con-
trol has been carried out for decades. Technologies based on, for example, anti-microbial
coatings on touch surfaces aiming to improve the level of hygiene and reduce the transmis-
sion of infections in building environments are already commercially available. However,
individual products are not enough to break the infection chain in indoor environments.
Pioneering work in consolidating all central indoor hygiene elements (air, water, surfaces)
to a comprehensive indoor hygiene concept (IHC) has been done by Satakunta University
of Applied Sciences (SAMK). Several related studies have been conducted on IHC effects
on the microbial burden in public spaces such as kindergartens, hospitals, and elderly care
homes [8–10]. The main idea of IHC is to create an innovative and comprehensive overar-
ching solution implemented already during the construction phase in order to improve the
level of hygiene during the whole life cycle of the building. To provide information on risk
evaluation, prudent use, and cleaning of antimicrobial coatings, SAMK has actively partici-
pated in the European COST Action network AMiCI (Antimicrobial coating innovations to
prevent infectious diseases) [11–15].

The HygTech alliance [16], a group of Finnish companies, has collaborated with SAMK
since 2013 to create comprehensive solutions for indoor surfaces in shared public spaces
including antimicrobial coatings for waiting areas, bathrooms, and clinical examination
rooms. Industry–academia collaborations are hence important when creating innovative
solutions, during operation in health care settings, and when proving and elucidating
effects of new technologies. It is further crucial that all parties in a construction project of,
e.g., a new hospital, from architects, electrical, and HVAC (heating, ventilation, and air
conditioning) engineers to maintenance and cleaning personnel understand the importance
of the concept.

A way forward to improve the level of indoor hygiene by minimizing infection
transmission is to use materials that have inherent antimicrobial properties (e.g., silver-
containing materials and copper-based alloys) or that are coated or treated with antimi-
crobial additives for high-touch applications [12,17]. This can be accomplished by using
materials with antimicrobial properties on critical, frequently touched surfaces, such as
door handles, handrails, chair armrests, and toilet flush buttons, combined with traditional
infection prevention and control procedures (including proper hand hygiene, efficient
cleaning, and disinfection) and prudent use of antibiotics [18]. However, there are con-
flicting views on the safety of using antimicrobial materials and coatings from an AMR
perspective [14]. There is hence a pronounced need to elucidate the benefits and value of
the indoor hygiene concept [12,19,20]. The antimicrobial efficiency of silver metal has been
known for thousands of years, connected to a slow release of silver ions when used in a
variety of applications both for consumers and in the medical sector, e.g., [21]. Silver ions
have shown a high antimicrobial capacity in water already at very low concentrations [22].
Silver-doped phosphate glass is an example of an antimicrobial additive from which the
release of silver from the soluble glass structure can be controlled [23,24]. The antimicrobial
properties of silver-doped phosphate glass in commercially available products have been
reported for, e.g., coatings on doors and door handles, in wooden furniture, textiles, and
electrical switches in health care settings [25–28].

The aim of this paper is to elucidate the influence of simulated indoor weathering
(repeated dry/wet daily cycles at constant temperature) and simulated fingerprint contact
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on the antimicrobial properties of commercial laminate and powder coatings treated with
silver-doped phosphate glass as an antimicrobial additive (Figure 1). Three research ques-
tions were addressed: (i) is the antimicrobial efficacy of silver-treated laminate surfaces and
powder coatings (IH materials) reduced upon simulated surface weathering at atmospheric
indoor conditions and simulated fingerprint contact? (with and without deposition of
artificial sweat), (ii) is the silver content within the laminates or powder coatings present
in the outermost top surface, and are released concentrations of silver measurable? and
(iii) can repeated manual surface cleaning with commercial cleaning agents of different
chemistry hinder bacterial growth on silver-treated laminate surfaces and will repeated
cleaning influence their surface properties and antimicrobial efficiency?
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Figure 1. Schematic illustration of indoor weathering and bacteria transfer via fingerprint contact
with antimicrobial high-touch surfaces.

Weathering and antimicrobial studies were conducted following a newly elaborated
test methodology [29] proven able to simulate indoor weathering by exposing laminate
and powder-coated samples to daily cycles of dry and wet conditions in a climatic chamber
(thin aqueous layer conditions [19]) and simulating fingerprint contact by repeatedly
spraying small drops of artificial sweat onto the surfaces. The differently weathered
surfaces (1 day up to 4 weeks) were exposed to model bacterial strains (Escherichia coli
and Bacillus subtilis) added to the surfaces in small droplets mimicking fingerprint bacteria
transfer [29]. Gram-positive and Gram-negative model bacteria were used to mitigate any
risk of transfer and spread of pathogenic bacteria during the characterization. Unexposed
and exposed surfaces were evaluated in terms of their antimicrobial efficiency (viability),
outermost surface composition (X-ray photoelectron spectroscopy), extent of released silver
(atomic absorption spectroscopy), and changes in surface appearance (scanning electron
microscopy) and characteristics (wettability).

2. Materials and Methods
2.1. Chemicals and Solutions

Fingerprint contact was simulated using artificial sweat (ASW) prepared according to
the EN 1811 standard [30], mixing 5.0 g/L sodium chloride (NaCl), 1.0 g/L urea (CH4N2O),
1.0 g/L lactic acid (C3H6O3), and ultrapure water (Milli-Q, 18.2 MΩ·cm, Millipore, Solna,
Sweden) to a pH of 6.5 ± 0.05 (adjusted by adding NaOH). ASW was freshly prepared
and used within 8 h of preparation to be pre-deposited on the high-touch surfaces in a
well-controlled way by using an airbrush (Aztek-A220 Broad Stroke Airbrush system,
Aztek, Cleveland, OH, USA). All chemicals (analytical grades) were obtained from VWR,
Stockholm, Sweden.

Silver-doped phosphate glass (non-crystalline, particle size <5 µm, CAS no: 308069-39-8),
used as an antimicrobial additive in the laminate and powder coatings, was obtained from
BioCote®, Coventry, UK (Product name: B85003). The product consists of sparingly soluble
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silver ions incorporated into a glass matrix, which provides a slow release of silver ions
to the surface of the product. Information on its presence in the laminate and powder
coatings is given in Section 2.2. The manufacturer of the antimicrobial additive reports
antimicrobial effects on both Gram-positive and Gram-negative bacteria and fungi [31].
Specific surface area measurements of the additive particles using the BET (Brunauer,
Emmett and Teller) technique (3Flex, Micromeritics, Norcross, GA, USA) revealed a surface
area of 8.23 ± 0.187 m2/g.

The effect of repeated cleaning on the antimicrobial efficiency of the laminate surfaces
was evaluated using two different commercially available cleaning agents of different
chemical characteristics: Plusclean, Kiilto Pro, Finland [32] (bio-based detergent) and
Erisan Oxy+, Kiilto Pro, Tampere, Finland [33] (oxidizing detergent). Cleaning was con-
ducted using concentrations suggested by the suppliers. The Plusclean detergent solution
(non-ionic surfactants < 5%, Soap < 5%, pH 9.65 ± 0.05) was diluted in water to 50 g/L,
investigating effects of two different (5% and 10%) cleaning agent concentrations. Parallel
cleaning studies (2 and 5%) were performed using the Erisan Oxy+ detergent (sodium
percarbonate > 30%, TAED (tetraacetyletylendiamin) 5–15%, Complexing agents > 30%,
Non-ionic surfactants < 5%; pH of 7.3 ± 0.04).

2.2. Commercial Surface
2.2.1. Laminate

Decorative high-pressure laminate (HPL) surfaces treated with antibacterial silver-
doped phosphate glass (BioCote®) were provided by ISKU, Lahti, Finland, Figure 2. This
multilayered commercial product is manufactured at high temperature (≥120 ◦C) and high
specific pressure (≥5 MPa). Following the CSN EN 438 standard [34] definition, the material
consists of layers of cellulosic fibrous materials (paper) impregnated with thermosetting
resins, bonded together by means of a high-pressure process. The impregnation of the
cellulosic fibers with thermosetting resin enables the fibers to become saturated with the
resin prior to the lamination process. This is followed by a series of oven drying and curing
steps to achieve the desired degree of polymerization of the resin layers and a homogeneous
non-porous material of required density (≥1.35 g/cm3) and surface finish.
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Figure 2. Schematic illustration of the laminated surface treated with silver phosphate glass as
antimicrobial additive in the top layer.

The addition of the antimicrobial additive to the commercial laminate investigated in
this study is only conducted to the resin used for the top-most decorative layer (Figure 2).

White laminate samples (5 × 5 cm2 and 1.5 × 1.5 cm2) for testing were supplied
by ISKU. The white surface appearance originates from titanium dioxide (TiO2) pigment
non-evenly distributed within the resin-treated outer layer, seen as areas of white particles
in the SEM images of Figure 3.
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Figure 3. Scanning electron microscopy (SEM) images of the as-received laminate surface with areas
of TiO2 particles providing the whitish surface appearance.

Area analysis by means of energy dispersive spectroscopy (EDS, experimental details
given below), providing µm-depth information of a larger surface (≈100 × 100 µm2),
revealed nitrogen, carbon, and oxygen to be the main elements, with small amounts of
sodium and titanium (Ti). Similar findings, which also detected silicon and calcium but no
titanium, were observed in the outermost 5–10 nm top surface using X-ray photoelectron
spectroscopy (XPS, experimental details given below) analyzing 0.35 µm2 sized areas. Nei-
ther silver nor phosphorous from the silver-doped phosphate glass additive was observed
using either EDS or XPS. This is probably related to its low content within the resin-treated
outer layer, estimated from the amount of antimicrobial additive added into the liquid
resin. Assuming a uniform distribution of the additive within the resin, its amount would
correspond to 0.12 to 0.18 g/m2 (12–18 µg/cm2). With an outer laminate layer thickness of
0.8 mm, this would correspond to a total content of 150–225 µg additive/cm3. By further
assuming a maximum silver content of 20 wt.% [24] in the silver phosphate glass, the total
amount of silver in the outer laminate layer would be less than 3.6 µg/cm2.

2.2.2. Powder Coated Surfaces

The investigated powder coatings were supplied by Teknos Ltd., Rajamäki, Finland,
and based on their Infralit™ (Rajamäki, Finland) epoxy-polyester hygienic powder coating
series. These coatings are commercially commonly used on surfaces that require high
levels of hygiene in hospitals, schools, and meeting rooms, on door handles and hospital
beds. The active antimicrobial additive is silver-doped phosphate glass based on the
BioCote® technology. Based on supplier information, the coatings show a very good
antimicrobial performance following the ISO 22196:2011 standard [35] with >95% and up to
99.99% reduction in viability for both Escherichia Coli and Methicillin-resistant Staphylococcus
Aureus (MRSA) [36].

Two different silver-doped phosphate glass concentrations in the powder coating on
aluminum substrates (1.5 × 1.5 cm2) were investigated from a research perspective. The
first series with an active amount of 0.5 wt.% (coating A) and a second series with twice the
content of the first series (coating B). Assuming a uniform distribution of the additive in
the coatings, this amount corresponds to a total amount of 65 and 129 µg additive/cm2 for
coating A and B, respectively. Assuming a maximum concentration of 20 wt.% silver in the
additive [24], the total amount of silver in the outer surfaces of coating A and B would be
less than 13 and 26 µg/cm2, respectively. No silver could be discerned by means of neither
EDS nor XPS. The main elements of the powder coating were, in addition to carbon and
oxygen, titanium, barium (Ba), sulfur (S), and minor amounts of strontium (Sr). Barium
and sulfur were predominantly present in an atomic ratio of 1:1 in the larger sized particles
and unevenly distributed over the surfaces, which implies the presence of BaSO4. Titanium
was more homogenously distributed within the coating, as seen in Figure 4. Both BaSO4
and TiO2 are constituents of the white pigment used for the investigated powder coating.
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Figure 4. SEM images of the as-received powder coating B and main elements identified by means
of EDS.

2.3. Surface Pre-Weathering

The test methodology, recently elaborated to mimic and study the effects of weathering
of high-touch surfaces at indoor conditions and simulated fingerprint contact [29] on their
surface characteristics and antimicrobial properties at indoor hygiene (IH) conditions, was
employed on the laminate and the powder coatings described above.

Pre-weathering was conducted in a climatic chamber (Weiss WK3 340/40, Reiskirchen,
Germany) using daily cyclic dry/wet conditions at a constant temperature of 25 ◦C (90%
relative humidity (RH) for 4 h, <10% RH for 2 h, 90% RH for 16 h, and <10% RH for
2 h) for periods up to 4 weeks. The surfaces were during the pre-weathering treatment
sprayed with artificial sweat (ASW) once a day and collected after 1 day, 1 week, 2 weeks,
and 4 weeks for surface characterization, silver release investigations, and antimicrobial
property investigations, as seen below. Parallel exposures were conducted on surfaces
without any ASW deposition.

2.4. Antimicrobial Testing

Antimicrobial testing was conducted on triplicate samples using Gram-negative and
Gram-positive model bacteria, Escherichia coli and Bacillus subtilis, possible to test in a
biosafety level 1 laboratory, thereby assessing differences between the differently weath-
ered surfaces of laminate and powder coatings of different silver additive content and to
minimize the risk of transfer of bacteria to the analytical instruments.

Nutrient agar (NA) medium was prepared by mixing 8 g of nutrient broth and 15 g
agar in 1 L water autoclaved at a temperature of 121 ◦C for 15 min using saturated steam
and a pressure of 15 psi. The nutrient broth (NB) was prepared without adding agar to
the nutrient broth powder and sterilized using an autoclave to prepare bacteria in liquid
suspension. The sterilized nutrient agar was poured into sterile Petri dishes, where it was
solidified at room temperature and later stored at 4 ◦C until further use. The ASW solution
was sterilized using a 0.2 µm syringe filter (Filtropur S, 0.2, Sarstedt, Germany) and checked
by plating 100 µL sterile ASW onto NA and incubated at 37 ◦C for 24 h. No bacteria growth
was discerned.

Bacteria cultures, Escherichia coli (E. coli, DSM no. 498) and Bacillus subtilis (Bacillus,
DSM no. 10), were grown in nutrient broth (NB) medium overnight (~20 h) at 37 ◦C and
30 ◦C with a constant shaking incubator of 190 rpm/min (Infors HT minitron), respectively.
The bacteria cultures were then centrifuged (Hermle Z206A centrifuge) at 2500 rpm for
5 min to remove the NB medium, and the bacteria cell pellet was collected and suspended
in sterilized ASW. This was followed by centrifugation at 2500 rpm for another 5 min. The
supernatant was discarded, and the bacteria cells were once more suspended in ASW. The
rationale behind using ASW as the bacteria medium was to mimic the transfer of bacteria
during fingerprint contact with high-touch surfaces [29].

The optical density (OD) of the bacteria cell culture was determined at a wavelength of
600 nm using a Biowave DNA spectrometer (Biochrom Ltd., Cambridge, UK) and diluted
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with ASW to OD = 0.1. The OD600 value was determined by calculating and setting the OD
of artificial sweat without bacteria as zero. The diluted cultures (12 µL) were then deposited
onto the samples (as described in [29]), incubated in sterile Petri dishes (autoclaved as
described above), covered with a lid at room temperature, and removed after 20 min.
All workplaces, such as the table for the experiment, were frequently disinfected using
concentrated alcohol (70%). A Bunsen burner was used to keep the surrounding air sterile.

After incubation, the samples were placed in sterile plastic tubes (Falcon tubes, Sarst-
edt, Germany) containing ASW (8 mL) and vortexed for 1 min with high speed (Ika Works
Inc., Wilmington, NC, USA) to detach loosely adherent bacteria from the surfaces. A
volume of 100 µL of the vortexed solution was plated and spread on a NA plate using an
L-shaped glass spreader and incubated at 37 ◦C (E. coli) and 30 ◦C (Bacillus) for 24 h. In
parallel, a serial dilution of the vortexed solution (100 µL) was prepared and spread onto a
NA plate and incubated for 24 h at 37 ◦C and 30 ◦C, respectively, to determine the presence
of live bacteria detached from the surface.

The growth of live bacteria was observed after 24 h of incubation, counted the number
of bacterial colonies and calculated as colony forming units (CFU) by the number of colonies
multiplied with the dilution factor. NA plates were used to quantify the viable number
of bacteria and/or colonies per mL detached via vortexing from the duplicate surfaces of
bacteria-incubated samples of different extent of pre-weathering.

A schematic illustration of the different experimental steps in antimicrobial testing is
given in Figure 5. Microscopic glass slides, not pre-weathered but sterilized in an autoclave,
were used as control and followed the same procedure described above.
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powder coatings treated with silver-doped phosphate glass as antimicrobial agent.

2.5. Surface Characterization and Silver Release Studies
2.5.1. Surface Appearance and Chemical Composition

SEM (Scanning electron microscopy) analyses were conducted on as-received and
selected weathered, cleaned, and unexposed surfaces with and without bacteria with the
aim to observe if the weathering process, the cleaning procedure, and or the interactions
with the bacteria would influence the top-surface appearance of the laminate and powder
coating surfaces. Secondary electron images were acquired by means of an FEI-XL 30 series
instrument equipped with an Oxford X-Max SDD (Silicon Drift Detector) 20 mm2 EDS
system at accelerating voltages of 5 kV and 15 kV for surfaces with and without bacteria,
respectively. The surfaces were coated with a thin (40–60 nm) layer of gold to avoid
extensive surface charging during the measurements.

XPS (X-ray photoelectron spectroscopy) studies were primarily performed to assess
whether silver was possible to observe at the outermost 5–10 nm surface of the laminate
and the powder coatings before and after exposure to bacteria as well as after repeated
cleaning. The outermost composition of the silver-doped phosphate glass particles only
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was also investigated. The measurements were conducted using an UltraDLD spectrometer
(Kratos Analytical, Manchester, UK) equipped with an Al x-ray monochromatic source
operating at 150 W (10 mA, 15 kV). Wide and high-resolution spectra were acquired on Na
1s, C 1s, O 1s, Ca 2p, P 2p, Si 2p, Al 2p, and Ag 3d. Energy correction was made against the
C 1s peak of adventitious carbon at 285.0 eV.

2.5.2. Silver Release in Artificial Sweat

Triplicate samples (2.25 cm2) of the weather laminate and powder coated surfaces of
different silver-doped phosphate glass content (BioCote®) with and without ASW deposi-
tion were completely immersed at tilted (45◦) conditions in 3.5 mL fresh ASW (i.e., a surface
area to solution volume ratio of 0.6 cm−1) in 10 mL large exposure vessels (Wheaton®

sodalime glass with low-density polyethylene (LDPE) snap cap (Mainz, Germany, VWR,
Sweden). Immersions were conducted at 30 ◦C under dark conditions in an incubator for
4, 24 and 168 h following the EN1811 standard [30]. Triplicate samples of two loadings,
5 mg and 50 mg, of the silver phosphate glass powder (BioCote®), was immersed in 50 mL
of ASW (Nalgene® (Rochester, NY, USA) 60 mL polymethylpentene (PMP) vessels with
polypropylene (PP) screw caps and exposed at dark conditions for 4 h at 30 ◦C in an
incubator. Blank reference solutions (ASW only) were exposed in parallel to correct for
background concentrations of silver for each condition. It should be noted that the immer-
sion conditions in solution as stipulated by the EN1811 standard are different compared
to the thin aqueous layer conditions prevailing at indoor conditions [19]. Nevertheless,
as no standardized way is available for metal release testing at thin film conditions the
test is relevant to assess released amounts of silver and compare with available regulatory
threshold values for silver migration, see Section 3.2.

Total concentrations of released silver were analyzed employing Graphite Furnace
Atomic Absorption Spectroscopy (GF-AAS) using a PerkinElmer AA800 Analyst instrument
operated at standard conditions. Prior to analyses of total amounts of released silver, the test
solutions were digested to a pH < 2 using 20 µL 65% HNO3. Calibration standards 0, 15, 30
and 60 mg/L were used, and quality control samples were run every 4th sample. Triplicate
readings were done for each sample. The limits of detection (LOD) and quantification
(LOQ) were 0.2 µg/L and 0.5 µg/L, which correspond to 0.0003 and 0.0008 µg silver/cm2,
respectively. Calibration standards of 0, 30, 60, and 80 µg/L were used for titanium with
LOD and LOQ of 3 and 8 µg/L, respectively. No measurable concentrations of released
titanium (<LOD) were observed from the white TiO2-treated laminate surfaces.

2.6. Cleaning of Bacteria Coated Surfaces and Bacteria Viability Studies

To mimic manual daily cleaning of IH surfaces at, e.g., a school or a hospital, two
different commercially available detergents were investigated to assess their effects on
the surface characteristics and antimicrobial properties. The cleaning agents, bacterial
cell suspensions, and ASW were prepared as described above. Each laminate sample
(triplicates) was placed in a sterile Petri dish with a tape stick on one side of the sample
surface, followed by the addition of 8 droplets (7.5 µL) of bacteria cell suspensions or
ASW (control) on each sample before being incubated at room temperature (RT) for 5 min
(Figure 6). After the incubation, the samples were either cleaned or not cleaned with the
commercial detergent (3 mL, 2 or 5% concentration). A non-scratch kitchen sponge (similar
to Scotch Brite) sized 3.6 × 6 cm2 was soaked in 3 mL of the detergent and used to clean
the surfaces in a specific direction (from left to right side) once or repeated times applying
manual pressure (equivalent to a load of 300 g).
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Figure 6. Schematic illustration of the experimental steps conducted to investigate the antimicrobial
efficiency of repeated cleaning of laminate surfaces.

After cleaning, the samples were left to dry for 1 h at room temperature since some de-
tergent solution remained on the surfaces after the cleaning step, followed by re-deposition
of bacteria cell suspension (E. coli) or ASW for the second cleaning cycle, incubated at RT
for 5 min, followed by 1 h of drying. These steps were repeated following the same protocol
until 5 cleaning cycles were completed. Two samples were removed for viability testing
after the 2nd, 4th, and 5th cleaning cycles. Non-cleaned samples were removed for viability
testing immediately after 5 min of incubation with the bacteria.

Bacteria viability was determined by placing the laminate samples in 20 mL ASW,
vortexing for 1 min at high speed to detach adhered bacteria, followed by spreading 100 µL
of the solution onto NA incubated at 37 ◦C for 24 h (Figure 6). Serial dilution of the vortexed
samples was prepared, plated on NA, and incubated at 37 ◦C for 24 h to determine the
extent of live bacteria in solution (CFU/mL). After vortexing, the samples were placed
onto NA plates to detach the bacteria from the surface (imprinting). Two replicates were
investigated for each treatment.

In order to test the antimicrobial efficiency of the detergent only, without any influence
of manual mechanical abrasion using the sponge, a bacteria cell solution (7.5 µL) was
deposited onto the laminate surface and incubated for 5 min, followed by the deposition
of detergent solution (7.5 µL /sample) on the bacteria deposited spots, and incubated for
1 h, followed by the deposition of another bacteria solution on the same spot for the 2nd
cleaning cycle. This procedure was repeated up to 5 cycles, and the number of live bacteria
present on the surfaces was determined after the 2nd, 4th, and 5th cycles (Figure 7). The
viability study was conducted for two detergent concentrations (Erisan Oxy+; 2 and 5%
and Plusclean; 5 and 10%).
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The number of live bacteria on the laminate surfaces was determined as described above.
To assess whether repeated cleaning would change the surface characteristics in terms

of composition and wettability, and thereby the antimicrobial efficiency, repeated wiping
(40 times) with the different cleaning agents was conducted. The antimicrobial effect was
investigated after 20 min, as described above (c.f. Figure 5). Differences in wettability and
surface composition were assessed by means of static water contact angle measurements
(Pocket Goniometer PGX, Fibro system, Stockholm, Sweden) and XPS (as described above).

3. Results

The following research questions were raised and addressed below:

• Is the antimicrobial efficacy of IH materials of laminate and powder coatings treated
with a silver-doped phosphate glass additive reduced upon simulated surface weath-
ering and fingerprint contact at atmospheric indoor conditions?

• Is the silver content within the treated materials in measurable amounts in the outermost
top surface, and are released concentrations of silver in artificial sweat measurable?

• Can surface cleaning with commercial cleaning agents hinder bacterial growth on
the silver-treated laminate surfaces, and will repeated cleaning influence the surface
characteristics and their antimicrobial efficiency?

3.1. Changes in Antimicrobial Efficacy on Differently Weathered (No Wear) IH Surfaces

The antimicrobial efficacy of the differently pre-weathered (1 day, 1, 2, and 4 weeks
mimicking indoor conditions and fingerprint contact) laminate and powder coated surfaces
treated with silver-doped phosphate glass was evaluated using the model Gram-negative
bacterial strain Escherichia coli and the Gram-positive bacterium Bacillus subtilis. Deposition
of ASW droplets containing bacteria onto the surfaces was conducted to mimic simplified
fingerprint contact. The reduction in viability of E. coli bacteria (OD 0.1) in % after 20 min
exposure on the differently pre-weathered laminate surfaces with and without deposition
of ASW is presented in Figure 8a. Results from parallel control exposures performed
on non-pre-weathered sterilized microscopic glass slides are included for comparison
to ensure that observed reductions in viability are not predominantly a consequence of
dry-out effects of the droplets as this will reduce bacteria viability. A considerable (and
statistically significant) reduction (>97%) in viability of E. coli was observed for all samples,
independent of the extent of pre-weathering or pre-deposition of ASW. A slightly lower
antimicrobial effect was observed for surfaces pre-weathered for 1, 2 and 4 weeks with
ASW compared to the 1-day pre-weathered surface, though the viability reduction was still
high (>96.5%).

Parallel studies conducted on the Gram-positive bacteria Bacillus showed similar
results with a reduction in viable cells exceeding 99%, even though some of the antimicro-
bial effects could most probably be attributed to dry-out of the bacteria-containing ASW
droplets, Figure 8b, since the bacteria viability also was somewhat reduced on the control
sample (glass).

The presence of silver-doped phosphate glass in the resin of the laminate surfaces
evidently enabled a considerable reduction in viability of both E. coli and Bacillus after
20 min of exposure (Figure 8). An additional antimicrobial effect of the TiO2-pigment (see
experimental) can, though, not be excluded. No viable bacteria were observed on any of the
surfaces after 24 h, mainly due to complete droplet dry-out (also on glass control, data not
shown). For the powder coated surfaces, no significant reduction in E. coli viability could
be observed after 20 min of exposure for coating A (the lower concentration of silver-doped
phosphate glass), Figure 9a, whereas a reduction was observed for Bacillus, Figure 9b, even
though some droplet dry-out effects were evident. This shows that the white pigment
of the powder coating containing both TiO2 and BaSO4 (see experimental) had minor
antimicrobial effects.
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Figure 8. The antimicrobial efficacy (reduction in viability) towards E. coli (a) and Bacillus (b) after
20 min for the differently pre-weathered (cyclic wet periods at constant temperature, with and without
artificial sweat (ASW) deposition) laminate surfaces treated with silver-doped phosphate glass as
antimicrobial additive. The results are presented as mean values of duplicate measurements of each
condition with a variation between 10–20%.
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Figure 9. The antimicrobial efficacy (reduction in viability) towards E. coli (a) and Bacillus (b) after
20 min for the differently pre-weathered (cyclic wet periods at constant temperature, with and
without artificial sweat (ASW) deposition) powder coated surfaces treated with 0.5 wt.% silver-doped
phosphate glass (coating A) as antimicrobial additive. The results are presented as mean values of
duplicate measurements of each condition with a variation between 10–20%.

Observed differences in viability between the different bacteria might reflect differ-
ences in how released silver ion interacts with the peptidoglycan-rich cell walls of the
Gram-negative (E. coli) and the Gram-positive (Bacillus) bacteria. Gram-negative bacte-
ria have an inner cytoplasmic cell membrane and an outer membrane predominantly
composed of lipopolysaccharides, whereas the cytoplasmic membrane of Gram-positive
bacteria is surrounded by a thicker layer of peptidoglycan [37]. The considerably thicker
(30 nm vs. 3–4 nm) negatively charged peptidoglycan layer of Gram-positive compared to
Gram-negative bacteria make them comparably more resistant towards silver ions (which
damage the cell walls, and within the cell influence DNA, damage bacterial proteins, and
promote the formation of reactive oxygen species), even though the lipopolysaccharide-rich
cell membrane of the latter improves its barrier properties [38]. Such differences have been
reported in the literature [21,37,38]. Differences in terms of cell membrane thickness, struc-
ture, and composition, as well as in the conformation of the peptidoglycan layer, can hence
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determine the antimicrobial potency of released silver ions [38,39]. Further investigations,
including other bacteria strains, are needed to gain a mechanistic understanding of findings
for the commercial laminate and powder coatings investigated in this study.

Powder-coated surfaces with a twice as high concentration of silver-doped phosphate
glass in the powder coating (coating B, 1 wt.%) resulted in a considerable reduction in
viability of both bacteria, Figure 10. An improved effect was also observed for Bacillus,
although the effect was predominantly a result of droplet dry-out, as the viability of the
bacteria on the control was considerably reduced (>65%).
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Figure 10. The antimicrobial efficacy (reduction in viability) towards E. coli (a) and Bacillus (b) after
20 min for the differently pre-weathered (with and without artificial sweat (ASW) deposition) powder
coated surfaces treated with 1 wt.% silver-doped phosphate glass antimicrobial additive (coating B,
twice as high concentration as for coating A, Figure 9). The results are presented as mean values of
duplicate measurements of each condition with a variation between 10–20%.

In all, the antimicrobial efficacy of laminate and powder coatings treated with silver-
doped phosphate glass was not hampered by differences in surface weathering at simulated
atmospheric indoor conditions and fingerprint contact. The extent to which the silver
additive within the powder coatings influenced the antimicrobial efficiency was both
material- and bacteria-dependent. Antimicrobial effects attributed to the white pigments
consisting of TiO2 (in the laminate) and TiO2/BaSO4 (in the powder coatings) cannot
be excluded.

3.2. Extent of Release of Ag in Artificial Sweat and Presence of Ag at the Outermost Surface

No silver (less than approx. 1 at.%) was observed in the outermost surface, either by
means of XPS (top 5–10 nm) or by means of EDS (µm-depth information), on any of the
laminate surfaces. This is in line with the information provided by the manufacturer (see
experimental) and calculated amounts in the materials corresponding to very low amounts
of silver from the silver-doped phosphate glass additive in the top laminate layer. No
silver was either observed by means of XPS or EDS at the top surface of any of the powder
coatings, independent on silver-doped phosphate glass concentration (0.5 or 1.0 wt.%).

The released amounts of silver determined from the laminate and powder coated
(coating A) surfaces immersed from 4, 24, and up to 168 h in ASW are presented in
Figure 11a. The results show very limited amounts of released silver and observations only
from a few replicates (4 out of 81 of the laminate samples and 9 out of 81 of the powder-
coated (A) samples). No significant differences in the released amounts of silver between the
two materials could be discerned, even though a slightly lower median amount of released
silver per surface area was observed for the powder coating compared to the laminate. For
the powder coated surfaces with twice the silver phosphate glass concentration (coating B),
measurable amounts of released silver were determined from almost all samples (25 out
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of 27 samples), Figure 11b. Despite twice as high silver concentration within coating B,
the amounts of released silver were very similar as determined for the powder coating
A containing less silver. The amount of released silver was further independent of the
duration of pre-weathering (data not shown), and no significant effect of deposition of
ASW could be observed, Figure 11b.

The observed released amounts of silver were approximately 10 times lower from
the laminate and both powder coatings when compared with previously reported release
data for bare silver metal particles in artificial sweat (0.06–0.08 µg/cm2) after similar time
periods following the same test protocol [40].
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Figure 11. Extent of released silver (Ag) in artificial sweat (ASW) (LOD ≈ 0.0003 µg/cm2 (0.2 µg/L)
and LOQ ≈ 0.0008 µg/cm2 (0.5 µg/L)) from differently pre-weathered laminate and powder coated
(powder coating A) surfaces (a) and powder coated surfaces with twice the silver phosphate glass
content (powder coating B) pre-exposed with and without ASW (b). The grey box represents the
interquartile range, IQR (25th to 75th percentile), the solid red line represents the median (50th
percentile), the whiskers show the range within 1.5·IQR, the red squares show the mean value, and
the red diamonds show outliers. The red dashed line in (a) represents the limit of released silver
according to EU regulation 10/2011 for materials and polymers in contact with food [41].

The released amount of silver from the silver-doped phosphate glass powder (not
integrated into any resin or matrix) was, after 4 h in ASW, less than 0.2% (0.0017 µg/µg).
Considering its measured BET surface area (8.225 m2/g), this amount corresponds to a
release of silver of 0.021 µg/cm2. The released amounts of silver per surface area from the
laminate and the powder coatings (A, B) were 4–8 times lower.

Assuming a 20 wt.% silver content of the silver phosphate glass present in the laminate
(see experimental) in an amount of 12–18 µg/cm2 (2.4–3.6 µg/cm2), the extent of released
silver from the laminate and the powder coatings would correspond to 0.08–0.17% of the
silver content of the additive. Assuming a 1–5 wt.% silver content, the corresponding levels
would be 20 to 4 times lower, i.e., <0.05% of the mass of the additive.

From a health risk perspective, it should be noted that released amounts of silver
were furthermore a thousand-fold lower than the limit of released silver stipulated by the
EU regulation 10/2011 for materials and polymers in contact with food [41], Figure 11a.
No regulatory limit values exist for indoor hygienic surfaces. The small amounts (and
concentrations) released from the laminate and powder coating B were evidently sufficient
to considerably reduce the viability of the investigated bacteria (see Figures 8–10).

In all, the addition of different concentrations of silver-doped phosphate glass into
the matrix of laminate and powder coatings did not result in any detectable amounts of
silver at the top surface of any of the materials. However, released amounts of silver in
ASW were determined in very low amounts (concentrations), a thousand times lower than
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the threshold values stipulated by the regulatory framework for materials and polymers
in food contact [41] and approximately in the order of 10 times lower than reported for
micron-sized silver metal particles exposed at similar conditions [40].

3.3. Effect of Repeated Cleaning on Antimicrobial Efficacy

High-touch surfaces in, e.g., health care settings, are daily cleaned with different
chemical detergents to hinder the spread of bacteria and viruses. However, the use of such
solutions can also influence the material and its surface characteristics, which in turn can
influence the antimicrobial efficacy. Results are, in the following, presented to elucidate
if manual cleaning using two different commercial detergents (Erisan Oxy+, containing
hydrogen peroxide and peracetic acid, and Plusclean, composed of biologically degradable
raw materials) is able to hinder bacteria (E. coli) growth on silver-doped phosphate glass
treated laminate surfaces and whether repeated cleaning influences the antimicrobial
efficacy and the surface characteristics.

The cleaning experiments were conducted as described in experimental. Similar
to findings after 20 min (see Figure 8), the non-cleaned laminate surfaces were already
within 5 min able to reduce the viability of the bacteria with more than 98%, schematically
illustrated in Figures 12 and 13. Manual cleaning using both cleaning agents hindered
bacteria growth. The effect was even more pronounced (no live bacteria observed) after
cleaning with Erisan Oxy+ compared with Plusclean. Some live bacteria were still observed
on the surfaces cleaned with Plusclean after the 4th and 5th cycles of bacterial deposition
and cleaning, whereas no live bacteria were observed on the laminate surfaces cleaned
with Erisan Oxy+ regardless of the cycle of bacterial deposition and/or cleaning.
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Figure 12. Schematic illustration of the antibacterial efficacy of the laminate surface (pre-weathered
for one week) after repeated cleaning with Erisan Oxy+ (5%) and deposition of E. coli bacteria (control:
8.8 × 107 CFU/mL). Green and red bacteria illustrate live and dead bacteria, respectively.
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Figure 13. Schematic illustration of the antibacterial efficacy of laminated surfaces (pre-weathered
for one week) after repeated cleaning with Plusclean (5%) and deposition of E. coli bacteria (control:
4.8 × 107 CFU/mL). Green and red bacteria illustrate live and dead bacteria, respectively.

To assess the antimicrobial capacity of the cleaning agents only, droplets of each agent
were added onto the deposited bacteria droplets after 5 min, and the presence of live
bacteria was determined as described above. Numbers of alive bacteria (in CFU/mL) are
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presented in Tables A1 and A2. Surfaces with live bacteria were, in addition, imprinted on
NA and the fraction of live bacteria after the cleaning process was calculated, Table 1. The
results show that both concentrations of Erisan Oxy+ were sufficient to completely kill the
bacteria, whereas some bacteria were still alive on the surfaces when treated with Plusclean.

Table 1. Number of live bacteria (in %) after repeated surface cleaning (2, 4 and 5 cycles, see Figure 7)
of laminate surfaces using two chemical detergents of different compositions and concentrations (as
stipulated by the supplier).

Cleaning
Cycle

Plusclean Erisan Oxy+

5 vol.% 10 vol.% 2 vol.% 5 vol.%

2nd 0.003 0.001 0 0
4th 0.008 0.009 0 0
5th 0.019 0.019 0 0

The interactions between the laminate and the cleaning agents did not, according
to the SEM investigation, result in any evident differences in the top-surface appearance,
neither after cleaning using the biodegradable agent (Plusclean) nor the oxidizing agent
(Erisan Oxy+). Evident residues of the cleaning agents, though, remained on the surfaces,
see Figure 14, with locally distributed residues of Erisan Oxy+ predominantly composed
of oxygen, sodium, and chlorine, and of Plusclean composed of magnesium, silicon, and
oxygen. The compositional area measurements with EDS of the laminate matrix (outside
the areas with white pigment particles, see Figure 3) revealed no differences in composition
with carbon to nitrogen weight ratios of 0.79–0.80 for all surfaces.
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Figure 14. Scanning electron microscopy (SEM) images of the top-surface morphology of one-week
weathered laminate surfaces before (a) and after 5 cleaning steps using an oxidizing chemical agent
(Erisan Oxy+) (b,d) and biodegradable agent (Plusclean) (c,e). The white arrows illustrate some
residues from the cleaning agent.

In contrast to complete hindrance and bacteria killing when cleaning the laminate
surfaces with Erisan Oxy+, neither repeated cleaning nor interactions with the cleaning
agent Plusclean improved the capacity of the laminate surface to hinder bacteria growth
compared to non-cleaned surfaces. Similar effects were observed for laminate surfaces
repeatedly cleaned 40 times using both cleaning agents before being tested for their an-
timicrobial efficacy, see Figure 15. The results show that cleaning the laminate surfaces
with an oxidizing cleaning agent (Erisan Oxy+) is successful in the complete killing of
E-coli bacteria, whereas cleaning with the bio-based agent (Plusclean) will not improve the
antimicrobial effect.
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Figure 15. The antimicrobial efficacy after 20 min of laminate surfaces towards E. coli including
pre-weathered (one week, see Figure 8) and cleaned surfaces (40 times using oxidizing-(Erisan Oxy+)
and biobased-(Plusclean) cleaning agents). The results are presented as mean values of duplicate
measurements of each condition with variations within 10–20%.

The results are further supported by the presence of residues of the cleaning agents,
as this changed the wettability of the surfaces. The effect was more pronounced on the
laminate surfaces cleaned with Erisan Oxy+, for which the surface, after repeated cleaning
(40 times), became more hydrophilic compared with non-cleaned surfaces (Figure 16).
Similar effects, though considerably less pronounced, were observed as a result of cleaning
with Plusclean. The results imply an improved antimicrobial effect of cleaned surfaces,
both due to the antimicrobial effect of the cleaning agents (in particular, Erisan Oxy+) and
due to an increased contact area between the sweat droplets, hence the bacteria with the
antimicrobial laminate surface.
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In all, the results show that the oxidizing chemical agent (Erisan Oxy+) was more
efficient in cleaning the surfaces and killing the bacteria, both with and without manual
surface cleaning (abrasion), compared to the agent composed of biologically degradable
constituents (Plusclean) leaving viable bacteria behind. The non-cleaned laminate surfaces
reduced the number of bacteria with >98%. Some bacteria were still alive after 5 min
exposure but were completely killed by the oxidizing chemical agent. Surface cleaning
resulted in reduced wettability and left residues on the surfaces, effects that are beneficial
from an antimicrobial efficacy perspective.

4. Concluding Remarks and Outlook from a Sustainability Perspective

The importance of applying indoor hygiene concepts and using antimicrobial surfaces
in public spaces, where many people spend their time or are passing through, to hinder
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the spread of bacteria and infections is elucidated in this study. This industry-academic
collaborative study assessed the antimicrobial performance of commercial laminate and
powder-coated surfaces treated with silver-doped phosphate glass additives in relation
to the effects of surface weathering and repeated cleaning at indoor hygiene conditions.
The investigated materials are typically used as high-touch surfaces in public areas such as
hospitals and schools. Indoor surface weathering and fingerprint contact did not, or only
slightly, reduce the antimicrobial properties. The extent of released silver from the surfaces
in artificial sweat was orders of magnitude lower than regulated threshold values for
silver-containing materials in food contact. An additional antimicrobial effect was observed
as a result of repeated surface cleaning using chemical agents of oxidizing properties.

The study is of considerable societal relevance and closely connected to the United
Nations Sustainable Development Goals [42], which aims to create comprehensive plans of
actions for sustainable development to improve human health and protect the environment.
The utilization of antimicrobial materials and coatings for high-touch surfaces is a promis-
ing approach in preventing infections from spreading in public spaces. The investigated
materials of this study address sustainability aspects in multiple ways and are relevant for
both SDG 9 (Build resilient infrastructure, promote inclusive and sustainable industrializa-
tion, and foster innovation) and SDG 17 (Revitalize the global partnership for sustainable
development). In relation to SDG 3 (Ensure healthy lives and promote well-being for all
at all ages), their use is beneficial from a health and well-being perspective by proactively
improving the usability and healthiness of shared public spaces and assisting in lowering
the costs of health care.

The emerging climate crisis has highlighted the fact that the whole-life impact of
buildings is critical in targeting a net-zero carbon-built environment. Sometimes, positive
values, such as energy savings and hygiene, can become adversarial with one another;
for instance, if the water temperature in the plumbing network is lowered too much, it
creates a favorable environment for microbial growth. In this study, the comprehensive
indoor hygiene concept, elucidated by hygienic surfaces with antimicrobial properties,
highlights the importance of considering the whole life cycle of a building (SDG 12 En-
sure sustainable consumption and production patterns). Hence, a holistic approach and
communication between different actors are needed when bringing innovative solutions to
the construction industry since it involves many actors and interactions at multiple levels.
An important aspect that needs more attention in the future is related to recycling and
waste management of antimicrobial materials containing, e.g., silver, at the end of the life
cycle. More multidisciplinary research and industry–academia collaboration are needed
to further improve sustainability. Users and producers of the materials should discuss
and implement the results. Users of antimicrobial materials also need to be involved in
discussions of environmental aspects in order to implement the results of this study in the
most efficient way.
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Appendix A

Table A1. Number of live bacteria (CFU/mL) after cleaning the laminate surface using Erisan Oxy+.
The deposited number of bacteria was 8.8 × 107 CFU/mL.

Number of Cleaning Cycle
Live Bacteria (CFU/mL)

No Cleaning Cleaning

2nd 3.5 × 104 0
4th 5.6 × 104 0
5th 4.4 × 104 0

Table A2. Number of live bacteria (CFU/mL) after cleaning the laminate surface using Plusclean.
The deposited number of bacteria was 4.8 × 107 CFU/mL.

Number of Cleaning Cycle
Live Bacteria (CFU/mL)

No Cleaning Cleaning

2nd 1.9 × 104 0
4th 1.5 × 104 12
5th 1.4 × 104 57
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