Powder Coating as a Corrosion Protection Method

Paint with Pride
Introduction

Corrosion is due to a chemical reaction between metal and its environment, causing changes in the metal’s properties which often damage the metal, its environment or the technical system in question.

Corrosion prevention or anti-corrosion protection either slows down or prevents damage due to corrosion. Corrosion protective painting provides corrosion prevention for metal surfaces based on an anti-corrosive paint, which can be either wet paint or powder coating. The international standard for protective paint systems is ISO 12944.

Increasing quality requirements, more demanding usage conditions and longer warranty periods create a need for verified data on the durability of coatings.

Teknos has been testing its anti-corrosive INFRALIT powder coatings with methods compliant with standard EN ISO 12944 for years now, even though the standard does not actually cover powder coatings. This brochure is intended to serve as a set of instructions for the corrosion protective painting, with powder coatings, of metal objects over 3 mm thick, cleaned to preparation grade Sa 2½, and of chemically pretreated sheet metals, as well.

Typically, corrosion protection of sheet metals is based on a combination of chemical pretreatment suitable for the required corrosivity category and a powder coating, on which you can obtain detailed information from Teknos’ sales department for industrial products.

ISO 12944 standard consists of following parts

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Classification of Environments</td>
</tr>
<tr>
<td>3</td>
<td>Design Considerations</td>
</tr>
<tr>
<td>4</td>
<td>Types of Surface and Surface Preparation</td>
</tr>
<tr>
<td>5</td>
<td>Protective Paint Systems</td>
</tr>
<tr>
<td>6</td>
<td>Laboratory Performance Test Methods</td>
</tr>
<tr>
<td>7</td>
<td>Execution and Supervision of Paint Work</td>
</tr>
<tr>
<td>8</td>
<td>Development of Specifications for New Work and Maintenance</td>
</tr>
</tbody>
</table>

Durability of the protective paint system

According to standard ISO 12944-1, the durability range of the paint system is divided in three categories:

- 2–5 years (L) – LOW
- 5–15 years (M) – MEDIUM
- Over 15 years (H) – HIGH

A durability category is not a “guarantee period”. The durability category refers to the presumed time until a perfect service painting is needed. Durability time is an estimate, which can help the owner in the preparation of a maintenance programme.

Classification of environments

The local atmosphere and special stresses of the structure greatly affect the durability of corrosion protective painting and the planning of such painting. Standard ISO 12944-2 classifies atmospheric environments into six categories:

- C1: very low
- C2: low
- C3: medium
- C4: high
- C5-I: very high (industry)
- C5-M: very high (marine)

This classification is based on the corrosion speed of steel and zinc during the first year.
Powder Coating as a Corrosion Protection Method
Corrosivity categories

In the first instance, paint types are selected in accordance with the protection requirements of the object. Paints must also withstand stresses caused by preparation and installation.

When describing the prevailing conditions of the target, part 2 of standard ISO 12944 is used. This part divides up environmental conditions on the basis of the corrosion effect on metal in atmospheric-corrosivity categories C1-C5 and immersion corrosivity categories Im1-Im3.

The most common environmental conditions indoors belong to corrosivity categories C1 and C2, provided that no significant amounts of corrosion-effective elements are present in addition to moisture. Outdoor conditions belong to corrosivity category C2-C5. According to the quality and amount of impurities in the air, local atmospheric environments can be classified into rural, urban, marine or industrial atmospheres.

In addition to the above mentioned corrosivity categories, special stresses occur, for instance in chemical, paper and pulp industry plants, and in bridges and structures buried in soil or immersed in water. Typical corrosion stresses that appear under special conditions include corroding gases, chemical dust, splashes, biological and mechanical abrasion, heat and immersion stresses.

When estimating the environmental stress category of a target, special account must be taken of the corroding factors of the immediate surroundings. From the corrosion protection point of view, these immediate surroundings (micro atmosphere) have fundamentally greater significance than the local atmospheric environment (macro atmosphere).

For instance, Finland's basic climate type is chilly, moist and clean compared to most industrialised countries. Since, in principle, the same kinds of paints may differ in their application and durability characteristics, it is important to select a protective paint system of which you have good experiences in practice.

Structures

Part 3 of standard ISO 12944 “Design considerations” instructs designers of steel constructions on taking account of the demands of corrosion protection painting in the design of structures.

The location and features of the structure, such as sharp edges, corners and other similar areas that are difficult to paint, have a fundamental effect on the execution of corrosion protection paint work, its inspection and maintenance as well as the durability of the painting.

For targets that are difficult to paint, better "corner coverage" is obtained through powder coating than with a traditional wet paint, even for one-layer painting.
Paint systems

The protective paint system comprises the painting substrate, surface preparation for the substrate and the combination of coatings based on which the substrate is painted.

Standard ISO 12944-5 presents the most common protective paint types and paint systems.

<table>
<thead>
<tr>
<th>Paint type</th>
<th>ISO 12944-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylic paints</td>
<td>AY</td>
</tr>
<tr>
<td>Alkyd paints</td>
<td>AK</td>
</tr>
<tr>
<td>Epoxy paints</td>
<td>EP</td>
</tr>
<tr>
<td>Epoxy tar paints</td>
<td>CTE</td>
</tr>
<tr>
<td>Chlorinated rubber paints</td>
<td>CR</td>
</tr>
<tr>
<td>Polyurethane paints</td>
<td>PUR</td>
</tr>
<tr>
<td>Polyurethane tars</td>
<td>CITPUR</td>
</tr>
<tr>
<td>Ethyl silicate</td>
<td>ESI</td>
</tr>
<tr>
<td>Zinc epoxy</td>
<td>EPZn(R)</td>
</tr>
</tbody>
</table>

Paint system and marking under standard ISO 12944-5

The standard includes ten charts (A.1 – A.10), in which painting systems of various corrosivity categories for steel and zinc surfaces are presented.

In the footnote for the charts, various binder types are clarified and additional information is given on the paints.

For instance:
A5I.04 C5-I/M EPZn(R)EP 240/4 FeSa 2½
*(EP 8026-05 60/1, EP 8026-00 180/1 FeSa 2½)

* The marking in brackets is Teknos’ own, which does not accord with the standard.

Measuring the film thickness
Nominal film thickness refers to the paint’s dry film thickness, as mentioned in the specification. These measurements must average at least as much as the nominal thickness of the dry film. The maximum film thickness is agreed on a case-by-case basis, or together with the paint manufacturer.

Selection of the paint system
The paint system is selected according to the structure, substrate, required service life and external appearance in question. These must match the available surface preparation method and the prevailing painting conditions. The coatings must form a protective layer thick enough to provide economically viable corrosion protection.
Substrate preparation

Preparation grades
The state of steel surface immediately after cleaning is indicated as preparation grade or preparation quality grade. Standard ISO 8501-1 specifies the surface preparation grades by describing verbally, together with illustrative photographs, the visual texture of the surface.

Surface preparation performed using abrasive blast cleaning is designated with the marking “Sa”. The preparation grades for abrasive blasting are Sa 1, Sa 2, Sa 2½ and Sa 3.

Surface preparation with hand or power tools – scraping or wire brushing manually, or wire brushing or grinding using power tools – is designated with the marking “St”.

Grading of blast-cleaned steel surface profile
The surface profile refers to the surface micro-roughness, which is normally indicated as a ratio of the highest profile peak and the lowest profile valley. Grading of the surface profiles is given in ISO 8503-1.

For further information about substrate preparation, please see Teknos’ “Handbook for Corrosion Protection”, available on Teknos’ website.

Chemical pretreatments

Powder coating is most often applied to sheet metal products, which are typically pretreated chemically.

The usual pretreatment methods for powder-coated sheet metal products are iron or zinc phosphating. The phosphating process forms a firmly adherent, thin and fine-grained layer of phosphates on the metal surface. Metal objects are treated after cleaning with a phosphate solution using either dipping, spraying or brush application.

The test results indicate that iron phosphating is a suitable preparation method for cold-rolled steel up to corrosivity category C3, but should not be used in highly demanding conditions requiring greater corrosion resistance and longer service life. Zinc phosphating is a more durable preparation technology. The test results for zinc phosphating corresponded to mechanical preparation grade Sa 2½, which meets the requirements of corrosivity category C4.

In terms of traditional preparation methods, chromating is technically a more suitable method for aluminium and galvanized surfaces. However, it is noteworthy that chromium will be discontinued in the near future.
Thin film technology

Ever stricter environmental requirements and legislation have contributed to the abandonment of traditional pretreatment chemicals in favour of new, environmentally friendlier alternatives free of phosphates and chrome. New breakthroughs in chemistry have reduced the thicknesses of chemical layers, and thin film technology is nowadays a commonly used concept.

Teknos’ R&D department has been closely following the changes brought by new chemical agents to corrosion resistance and testing the functionality of chemical pretreatment with INFRALIT powder coatings. All test results are based on a test series performed in compliance with standard EN ISO 12944.*

The test results indicate that the corrosion resistance provided by the new pretreatment chemicals combined with a single coat of powder coating can easily achieve corrosivity category C4 and in some cases even C5.

Even though corrosivity categories of C5-M and up have been achieved with single-layer powder coating, two-layer paint system is recommended for demanding environments requiring greater corrosion resistance.

The quality and design of the metal work have a vital role in the corrosion resistance of the end product. Sharp edges and the hard-to-reach areas for spray application need to be taken into consideration. That is why two-layer application of powder coating is recommended for C4-M classification and above to ensure sufficient protection against corrosion.

<table>
<thead>
<tr>
<th>Corrosivity category</th>
<th>Paint System</th>
<th>Iron phosphating</th>
<th>Zinc phosphating</th>
<th>Thin film technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3-M</td>
<td>INFRA LIT PE 8350 80/1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>C4-M</td>
<td>INFRA LIT PE 8350 100/1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>C4-H</td>
<td>INFRA LIT PE 8350 80/1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>C4-H</td>
<td>INFRA LIT EP/PE 8087-30 80/1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>C5-M/H</td>
<td>INFRA LIT EP 8026-05 60/1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>C5-M/H</td>
<td>INFRA LIT PE 8350 100/1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>C5-M/H</td>
<td>INFRA LIT PE 8350 80/1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

TESTING METHODS

EN ISO 9227 Corrosion tests in artificial atmospheres. Salt spray tests.

*The tests were performed on cold-rolled steel painted in laboratory conditions. Preparation of test panels was performed in pretreatment chemical suppliers’ laboratory.
VOC or Volatile Organic Compounds

The reduction of solvent emissions sets demands and challenges, both for paint manufacturers and paint shops. Because powder coatings do not contain organic volatile compounds, coating with powder is an excellent alternative with respect to reducing solvent emissions. Totally solvent-free INFRALIT powder coatings meet the directive 1999/13/EC EU emission standards.

Durable surface

Since a powder-coated surface is extremely hard and elastic, transport and installation damage is kept insignificantly small. This improves corrosion protection and reduces the need for service painting.

Examples of protective paint systems

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A2.01 C2/L</td>
<td>PE 8350 60/1 FeFo</td>
<td>P214a</td>
<td>AK 80/2 FeSa 2½</td>
<td>K12a</td>
</tr>
<tr>
<td>A3.06 C3/M</td>
<td>PE 8350 80/1 FeSa2½</td>
<td>P218b</td>
<td>EP 160/2 FeSa 2½</td>
<td>K18b</td>
</tr>
<tr>
<td>A3.11 C3/H</td>
<td>EP 8026-05 60/1</td>
<td>P219a</td>
<td>EP2n(R)EP 160/3 FeSa 2½</td>
<td>K19a</td>
</tr>
<tr>
<td>A3.11 C3/H</td>
<td>EP 8026-05 60/1 PE 8350 100/1 FeSa 2½</td>
<td>P227a</td>
<td>EP2n(R)EPPUR 160/3 FeSa 2½ Zh</td>
<td>K27a</td>
</tr>
<tr>
<td>A4.08 C4/M</td>
<td>PE 8350 120/1 FeSa2½</td>
<td>P218d</td>
<td>EP 240/3 FeSa 2½</td>
<td>K18d</td>
</tr>
<tr>
<td>A5.04 C5-I/M</td>
<td>PE 8316-05 60/1</td>
<td>P219f</td>
<td>EP2n(R)EP 240/4 FeSa 2½</td>
<td>K19c</td>
</tr>
<tr>
<td>A5M.06 C5-M/H</td>
<td>PE 8316-05 60/1 PE 8350 100/1 FeSa 2½</td>
<td>P219f</td>
<td>EP2n(R)EP 320/4 FeSa 2½</td>
<td>K19e</td>
</tr>
<tr>
<td>A6.04 Im 1/H</td>
<td>EP 8024-00 480/1 (2) FeSa 2½</td>
<td>P234c</td>
<td>EP 500/2 FeSa 2½</td>
<td>K34c</td>
</tr>
<tr>
<td>A7.10 C4/M</td>
<td>EP 8026-00 60/1 PE 8350 60/1 ZnSaS</td>
<td>P229g</td>
<td>EPPUR 120/2 ZnSaS</td>
<td>K29g</td>
</tr>
<tr>
<td>A7.11 C4/H</td>
<td>PE 8350 120/2 ZnSaS</td>
<td>P229h</td>
<td>EPPUR 160/3 ZnSaS</td>
<td>K29h</td>
</tr>
</tbody>
</table>

Norsok M-501 approved powder coating systems

<table>
<thead>
<tr>
<th>Surface treatment</th>
<th>Specification</th>
<th>DFT μm</th>
<th>Product comments</th>
<th>Test report number</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeSa 2½ + Zn-phosph.</td>
<td>INFRALIT PE 8316-05</td>
<td>80</td>
<td>Zinc rich polyester powder</td>
<td>VTT-S-07499-08</td>
</tr>
<tr>
<td></td>
<td>INFRALIT PE 8350</td>
<td>100</td>
<td>Polyester powder</td>
<td>VTT, Finland</td>
</tr>
</tbody>
</table>

Total DFT 180
Powder coatings are an economical and eco-friendly choice.
The largest and most modern powder coating factory in the Nordic countries is located in Rajamäki, Finland.
State-of-the-art
Powder Coating Factory

Teknos has over 40 years of experience in powder coating manufacturing. In 1971, Teknos began powder coating production in Helsinki factory. In 1977, the capacity had to be increased and the production moved to the new factory in Rajamäki.

The extension of Teknos’ powder coating plant, completed autumn 2007, comprises 10,000 m² and has increased our powder coating manufacturing capacity to 20,000 tonnes per year. If necessary, production can be doubled. The new, fully automated factory is the largest and most modern powder coating factory in the Nordic countries. Thanks to the state-of-the-art factory, Teknos is able to provide customers with a faster and more efficient service.

Teknos invests heavily in the product development of powder coatings by developing new paint types for new applications. Teknos INFRALIT Powder Coatings are ISO 9001 and ISO 14001 certified.
Teknos Group Companies

Teknos Oy
Helsinki factory, Head office
Takkatie 3
P.O.Box 107
FI-00371 Helsinki
FINLAND
Tel. +358 9 506 091
sales@teknos.fi

Teknos Oy
Rajamäki factory
Perännäkkuntie 12
P.O.Box 14
FI-05201 Rajamäki
FINLAND
Tel. +358 9 506 091
sales@teknos.fi

Teknos A/S
Industrievæl. 19
DK-6580 Vandrup
DENMARK
Tel. +45 76 80 94 00
teknos@teknos.dk

Teknos AB
Head office in Tranemo
Limmeredsv. 2, P.O.Box 211
SE-514 24 Tranemo
SWEDEN
Tel. +46 325 619 500
info@teknos.se

Teknos AB
Vedevåg factory in Vedevåg
Industrigatan 7
SE-711 72 Vedevåg
SWEDEN
Tel. +46 38 615 900
info@teknos.se

Teknos Deutschland GmbH
Edelzeller Strasse 62
D-38043 Fulda
GERMANY
Tel. +49 61 1098
info@teknos.de

Teknos Norge AS
Industriveien 28
NO-3430 Spikkestad
NORWAY
Tel. +47 31 29 49 00
teknos@teknos.no

Teknos (UK) Limited
Unit E1, Heath Farm
Banbury Road, Swerford
Oxfordshire OX7 4BN
UK
Tel. +44 1608 683 494
sales@teknos.co.uk

Teknos Ireland Limited
Unit 1, Fortwilliam Industrial Estate
Dangan Crescent
Belfast BT3 8JP
NORTHERN IRELAND, UK
Tel. +44 2890 960670
sales.nl@teknos.co.uk

Teknos Scotland Limited
Nettiehill Road
Houston Industrial Estate
Livingston EH54 5DL
UK
Tel. +44 1506 436222
sales.scotland@teknos.co.uk

Teknos OOO
Butyrskij Val. 68/70, bl.4, of.211
127055 Moscow
RUSSIA
Tel. /Fax +7(495) 967 19 61
info@teknos.ru

Branch of Teknos OOO
in St.Petersburg
Ul. Novye Zavody, d.56, k.3
19817 Peterhof, Maryino
RUSSIA

Teknos Sp. z o.o.
ul. Zemnowsta 59
PL-03-885 Warsaw
POLAND
Tel. +48 22 678 70 04
biuro@teknos.pl

Teknos Oliva Sp. z o.o.
ul. Chwańska 129-149
PL-81-371 Gdynia
POLAND
Tel. +48 58 629 91 62
biuro.gdynia@teknos.pl

Teknos d.o.o.
Cesta na Rupu 67
42000 Krna
SLOVENIA
Tel. +386 4 236 58 79
Fax +386 4 236 58 79
info@teknos.si

Teknos LLC
50 Artema Str., Office 5B
04033 Kiev
UKRAINE
Tel. /Fax +38 044 359 0333
sales.ukraine@teknos.com

Teknos OÜ
Lak 3a
EE-10621 Tallinn
ESTONIA
Tel. +372 656 3491
info@teknos.ee

SIA Teknos
Grendu street 4a
Riga
LV-1019
LATVIA
Tel. +371 6780 6430
teknos@teknos.lv

UAB Teknos
Savanorius pr. 349
Kaulnas
LT-51480
LITHUANIA
info@teknos.lt

Teknos Coatings (Shanghai) Co., Ltd
Rm 405a-407a
Silver Centre
No. 1388 North Shan Xi Road
Putuo District
Shanghai
CHINA
Tel. +86 21 6149 8582
info@teknos.com

Joint Venture Company
Manfield Teknos Chemical (Changzhou) Co., Ltd
Contacts via
Teknos Coatings Shanghai office

Teknos Oy
Representative Office
Kiseltova Street 55, rom 12
220002 Minsk
REPUBLIC OF BELARUS
Tel. /Fax +375 17 237 4336
sales.belarus@teknos.com

Teknos Group Oy
Teknos Group’s Parent Company
Takkatie 3
P.O.Box 107
FI-00371 Helsinki
FINLAND
Tel. +358 9 506 091
Fax +358 9 5060 9229
sales@teknos.fi

The Teknos Group

Teknos is one of Europe’s leading suppliers of industrial coatings with a strong position in retail and architectural coatings.

Teknos has its own production in seven countries: Finland, Sweden, Denmark, Germany, Poland, Russia and China. In addition, Teknos has sales companies in 15 countries and exports to more than 20 countries via a well-established network of dealers.

Teknos employs around 1,200 staff. Teknos was established in 1948 and is one of Finland’s largest family-owned businesses.

- Group companies
- Network of dealers

www.teknos.com